Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
The Lancet Oncology ; 2023.
Article in English | EuropePMC | ID: covidwho-2255654

ABSTRACT

Background COVID-19 sequelae can affect about 15% of patients with cancer who survive the acute phase of SARS-CoV-2 infection and can substantially impair their survival and continuity of oncological care. We aimed to investigate whether previous immunisation affects long-term sequelae in the context of evolving variants of concern of SARS-CoV-2. Methods OnCovid is an active registry that includes patients aged 18 years or older from 37 institutions across Belgium, France, Germany, Italy, Spain, and the UK with a laboratory-confirmed diagnosis of COVID-19 and a history of solid or haematological malignancy, either active or in remission, followed up from COVID-19 diagnosis until death. We evaluated the prevalence of COVID-19 sequelae in patients who survived COVID-19 and underwent a formal clinical reassessment, categorising infection according to the date of diagnosis as the omicron (B.1.1.529) phase from Dec 15, 2021, to Jan 31, 2022;the alpha (B.1.1.7)–delta (B.1.617.2) phase from Dec 1, 2020, to Dec 14, 2021;and the pre-vaccination phase from Feb 27 to Nov 30, 2020. The prevalence of overall COVID-19 sequelae was compared according to SARS-CoV-2 immunisation status and in relation to post-COVID-19 survival and resumption of systemic anticancer therapy. This study is registered with ClinicalTrials.gov, NCT04393974. Findings At the follow-up update on June 20, 2022, 1909 eligible patients, evaluated after a median of 39 days (IQR 24–68) from COVID-19 diagnosis, were included (964 [50·7%] of 1902 patients with sex data were female and 938 [49·3%] were male). Overall, 317 (16·6%;95% CI 14·8–18·5) of 1909 patients had at least one sequela from COVID-19 at the first oncological reassessment. The prevalence of COVID-19 sequelae was highest in the pre-vaccination phase (191 [19·1%;95% CI 16·4–22·0] of 1000 patients). The prevalence was similar in the alpha–delta phase (110 [16·8%;13·8–20·3] of 653 patients, p=0·24), but significantly lower in the omicron phase (16 [6·2%;3·5–10·2] of 256 patients, p<0·0001). In the alpha–delta phase, 84 (18·3%;95% CI 14·6–22·7) of 458 unvaccinated patients and three (9·4%;1·9–27·3) of 32 unvaccinated patients in the omicron phase had sequelae. Patients who received a booster and those who received two vaccine doses had a significantly lower prevalence of overall COVID-19 sequelae than unvaccinated or partially vaccinated patients (ten [7·4%;95% CI 3·5–13·5] of 136 boosted patients, 18 [9·8%;5·8–15·5] of 183 patients who had two vaccine doses vs 277 [18·5%;16·5–20·9] of 1489 unvaccinated patients, p=0·0001), respiratory sequelae (six [4·4%;1·6–9·6], 11 [6·0%;3·0–10·7] vs 148 [9·9%;8·4–11·6], p=0·030), and prolonged fatigue (three [2·2%;0·1–6·4], ten [5·4%;2·6–10·0] vs 115 [7·7%;6·3–9·3], p=0·037). Interpretation Unvaccinated patients with cancer remain highly vulnerable to COVID-19 sequelae irrespective of viral strain. This study confirms the role of previous SARS-CoV-2 immunisation as an effective measure to protect patients from COVID-19 sequelae, disruption of therapy, and ensuing mortality. Funding UK National Institute for Health and Care Research Imperial Biomedical Research Centre and the Cancer Treatment and Research Trust.

2.
Lancet Oncol ; 23(7): 865-875, 2022 07.
Article in English | MEDLINE | ID: covidwho-2117574

ABSTRACT

BACKGROUND: The omicron (B.1.1.529) variant of SARS-CoV-2 is highly transmissible and escapes vaccine-induced immunity. We aimed to describe outcomes due to COVID-19 during the omicron outbreak compared with the prevaccination period and alpha (B.1.1.7) and delta (B.1.617.2) waves in patients with cancer in Europe. METHODS: In this retrospective analysis of the multicentre OnCovid Registry study, we recruited patients aged 18 years or older with laboratory-confirmed diagnosis of SARS-CoV-2, who had a history of solid or haematological malignancy that was either active or in remission. Patient were recruited from 37 oncology centres from UK, Italy, Spain, France, Belgium, and Germany. Participants were followed up from COVID-19 diagnosis until death or loss to follow-up, while being treated as per standard of care. For this analysis, we excluded data from centres that did not actively enter new data after March 1, 2021 (in France, Germany, and Belgium). We compared measures of COVID-19 morbidity, which were complications from COVID-19, hospitalisation due to COVID-19, and requirement of supplemental oxygen and COVID-19-specific therapies, and COVID-19 mortality across three time periods designated as the prevaccination (Feb 27 to Nov 30, 2020), alpha-delta (Dec 1, 2020, to Dec 14, 2021), and omicron (Dec 15, 2021, to Jan 31, 2022) phases. We assessed all-cause case-fatality rates at 14 days and 28 days after diagnosis of COVID-19 overall and in unvaccinated and fully vaccinated patients and in those who received a booster dose, after adjusting for country of origin, sex, age, comorbidities, tumour type, stage, and status, and receipt of systemic anti-cancer therapy. This study is registered with ClinicalTrials.gov, NCT04393974, and is ongoing. FINDINGS: As of Feb 4, 2022 (database lock), the registry included 3820 patients who had been diagnosed with COVID-19 between Feb 27, 2020, and Jan 31, 2022. 3473 patients were eligible for inclusion (1640 [47·4%] were women and 1822 [52·6%] were men, with a median age of 68 years [IQR 57-77]). 2033 (58·5%) of 3473 were diagnosed during the prevaccination phase, 1075 (31·0%) during the alpha-delta phase, and 365 (10·5%) during the omicron phase. Among patients diagnosed during the omicron phase, 113 (33·3%) of 339 were fully vaccinated and 165 (48·7%) were boosted, whereas among those diagnosed during the alpha-delta phase, 152 (16·6%) of 915 were fully vaccinated and 21 (2·3%) were boosted. Compared with patients diagnosed during the prevaccination period, those who were diagnosed during the omicron phase had lower case-fatality rates at 14 days (adjusted odds ratio [OR] 0·32 [95% CI 0·19-0·61) and 28 days (0·34 [0·16-0·79]), complications due to COVID-19 (0·26 [0·17-0·46]), and hospitalisation due to COVID-19 (0·17 [0·09-0·32]), and had less requirements for COVID-19-specific therapy (0·22 [0·15-0·34]) and oxygen therapy (0·24 [0·14-0·43]) than did those diagnosed during the alpha-delta phase. Unvaccinated patients diagnosed during the omicron phase had similar crude case-fatality rates at 14 days (ten [25%] of 40 patients vs 114 [17%] of 656) and at 28 days (11 [27%] of 40 vs 184 [28%] of 656) and similar rates of hospitalisation due to COVID-19 (18 [43%] of 42 vs 266 [41%] of 652) and complications from COVID-19 (13 [31%] of 42 vs 237 [36%] of 659) as those diagnosed during the alpha-delta phase. INTERPRETATION: Despite time-dependent improvements in outcomes reported in the omicron phase compared with the earlier phases of the pandemic, patients with cancer remain highly susceptible to SARS-CoV-2 if they are not vaccinated against SARS-CoV-2. Our findings support universal vaccination of patients with cancer as a protective measure against morbidity and mortality from COVID-19. FUNDING: National Institute for Health and Care Research Imperial Biomedical Research Centre and the Cancer Treatment and Research Trust.


Subject(s)
COVID-19 , Neoplasms , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , Disease Outbreaks , Europe/epidemiology , Female , Humans , Male , Middle Aged , Neoplasms/epidemiology , Neoplasms/therapy , Oxygen , Registries , Retrospective Studies , SARS-CoV-2
5.
Ther Adv Med Oncol ; 12: 1758835920968463, 2020.
Article in English | MEDLINE | ID: covidwho-913990

ABSTRACT

BACKGROUND: This prospective, multicentre, observational INVIDIa-2 study is investigating the clinical efficacy of influenza vaccination in advanced-cancer patients receiving immune-checkpoint inhibitors (ICIs), enrolled in 82 Italian centres, from October 2019 to January 2020. The primary endpoint was the incidence of influenza-like illness (ILI) until 30 April 2020. All the ILI episodes, laboratory tests, complications, hospitalizations and pneumonitis were recorded. Therefore, the study prospectively recorded all the COVID-19 ILI events. PATIENTS AND METHODS: Patients were included in this non-prespecified COVID-19 analysis, if alive on 31 January 2020, when the Italian government declared the national emergency. The prevalence of confirmed COVID-19 cases was detected as ILI episode with laboratory confirmation of SARS-CoV-2. Cases with clinical-radiological diagnosis of COVID-19 (COVID-like ILIs), were also reported. RESULTS: Out of 1257 enrolled patients, 955 matched the inclusion criteria for this unplanned analysis. From 31 January to 30 April 2020, 66 patients had ILI: 9 of 955 cases were confirmed COVID-19 ILIs, with prevalence of 0.9% [95% confidence interval (CI): 0.3-2.4], a hospitalization rate of 100% and a mortality rate of 77.8%. Including 5 COVID-like ILIs, the overall COVID-19 prevalence was 1.5% (95% CI: 0.5-3.1), with 100% hospitalization and 64% mortality. The presence of elderly, males and comorbidities was significantly higher among patients vaccinated against influenza versus unvaccinated (p = 0.009, p < 0.0001, p < 0.0001). Overall COVID-19 prevalence was 1.2% for vaccinated (six of 482 cases, all confirmed) and 1.7% for unvaccinated (8 of 473, 3 confirmed COVID-19 and 5 COVID-like), p = 0.52. The difference remained non-significant, considering confirmed COVID-19 only (p = 0.33). CONCLUSION: COVID-19 has a meaningful clinical impact on the cancer-patient population receiving ICIs, with high prevalence, hospitalization and an alarming mortality rate among symptomatic cases. Influenza vaccination does not protect from SARS-CoV-2 infection.

6.
Lancet Oncol ; 21(7): 914-922, 2020 07.
Article in English | MEDLINE | ID: covidwho-597772

ABSTRACT

BACKGROUND: Early reports on patients with cancer and COVID-19 have suggested a high mortality rate compared with the general population. Patients with thoracic malignancies are thought to be particularly susceptible to COVID-19 given their older age, smoking habits, and pre-existing cardiopulmonary comorbidities, in addition to cancer treatments. We aimed to study the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on patients with thoracic malignancies. METHODS: The Thoracic Cancers International COVID-19 Collaboration (TERAVOLT) registry is a multicentre observational study composed of a cross-sectional component and a longitudinal cohort component. Eligibility criteria were the presence of any thoracic cancer (non-small-cell lung cancer [NSCLC], small-cell lung cancer, mesothelioma, thymic epithelial tumours, and other pulmonary neuroendocrine neoplasms) and a COVID-19 diagnosis, either laboratory confirmed with RT-PCR, suspected with symptoms and contacts, or radiologically suspected cases with lung imaging features consistent with COVID-19 pneumonia and symptoms. Patients of any age, sex, histology, or stage were considered eligible, including those in active treatment and clinical follow-up. Clinical data were extracted from medical records of consecutive patients from Jan 1, 2020, and will be collected until the end of pandemic declared by WHO. Data on demographics, oncological history and comorbidities, COVID-19 diagnosis, and course of illness and clinical outcomes were collected. Associations between demographic or clinical characteristics and outcomes were measured with odds ratios (ORs) with 95% CIs using univariable and multivariable logistic regression, with sex, age, smoking status, hypertension, and chronic obstructive pulmonary disease included in multivariable analysis. This is a preliminary analysis of the first 200 patients. The registry continues to accept new sites and patient data. FINDINGS: Between March 26 and April 12, 2020, 200 patients with COVID-19 and thoracic cancers from eight countries were identified and included in the TERAVOLT registry; median age was 68·0 years (61·8-75·0) and the majority had an Eastern Cooperative Oncology Group performance status of 0-1 (142 [72%] of 196 patients), were current or former smokers (159 [81%] of 196), had non-small-cell lung cancer (151 [76%] of 200), and were on therapy at the time of COVID-19 diagnosis (147 [74%] of 199), with 112 (57%) of 197 on first-line treatment. 152 (76%) patients were hospitalised and 66 (33%) died. 13 (10%) of 134 patients who met criteria for ICU admission were admitted to ICU; the remaining 121 were hospitalised, but were not admitted to ICU. Univariable analyses revealed that being older than 65 years (OR 1·88, 95% 1·00-3·62), being a current or former smoker (4·24, 1·70-12·95), receiving treatment with chemotherapy alone (2·54, 1·09-6·11), and the presence of any comorbidities (2·65, 1·09-7·46) were associated with increased risk of death. However, in multivariable analysis, only smoking history (OR 3·18, 95% CI 1·11-9·06) was associated with increased risk of death. INTERPRETATION: With an ongoing global pandemic of COVID-19, our data suggest high mortality and low admission to intensive care in patients with thoracic cancer. Whether mortality could be reduced with treatment in intensive care remains to be determined. With improved cancer therapeutic options, access to intensive care should be discussed in a multidisciplinary setting based on cancer specific mortality and patients' preference. FUNDING: None.


Subject(s)
Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Registries/statistics & numerical data , Thoracic Neoplasms/epidemiology , Aged , Betacoronavirus , COVID-19 , Cause of Death , Coronavirus Infections/mortality , Coronavirus Infections/pathology , Cross-Sectional Studies , Female , Hospitalization/statistics & numerical data , Humans , Longitudinal Studies , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/pathology , Risk Factors , SARS-CoV-2 , Thoracic Neoplasms/mortality , Thoracic Neoplasms/pathology , Thoracic Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL